15 research outputs found

    Do We Train on Test Data? Purging CIFAR of Near-Duplicates

    Full text link
    The CIFAR-10 and CIFAR-100 datasets are two of the most heavily benchmarked datasets in computer vision and are often used to evaluate novel methods and model architectures in the field of deep learning. However, we find that 3.3% and 10% of the images from the test sets of these datasets have duplicates in the training set. These duplicates are easily recognizable by memorization and may, hence, bias the comparison of image recognition techniques regarding their generalization capability. To eliminate this bias, we provide the "fair CIFAR" (ciFAIR) dataset, where we replaced all duplicates in the test sets with new images sampled from the same domain. We then re-evaluate the classification performance of various popular state-of-the-art CNN architectures on these new test sets to investigate whether recent research has overfitted to memorizing data instead of learning abstract concepts. We find a significant drop in classification accuracy of between 9% and 14% relative to the original performance on the duplicate-free test set. The ciFAIR dataset and pre-trained models are available at https://cvjena.github.io/cifair/, where we also maintain a leaderboard.Comment: Journal of Imagin

    Automatic Query Image Disambiguation for Content-Based Image Retrieval

    Full text link
    Query images presented to content-based image retrieval systems often have various different interpretations, making it difficult to identify the search objective pursued by the user. We propose a technique for overcoming this ambiguity, while keeping the amount of required user interaction at a minimum. To achieve this, the neighborhood of the query image is divided into coherent clusters from which the user may choose the relevant ones. A novel feedback integration technique is then employed to re-rank the entire database with regard to both the user feedback and the original query. We evaluate our approach on the publicly available MIRFLICKR-25K dataset, where it leads to a relative improvement of average precision by 23% over the baseline retrieval, which does not distinguish between different image senses.Comment: VISAPP 2018 paper, 8 pages, 5 figures. Source code: https://github.com/cvjena/ai

    Hierarchy-based Image Embeddings for Semantic Image Retrieval

    Full text link
    Deep neural networks trained for classification have been found to learn powerful image representations, which are also often used for other tasks such as comparing images w.r.t. their visual similarity. However, visual similarity does not imply semantic similarity. In order to learn semantically discriminative features, we propose to map images onto class embeddings whose pair-wise dot products correspond to a measure of semantic similarity between classes. Such an embedding does not only improve image retrieval results, but could also facilitate integrating semantics for other tasks, e.g., novelty detection or few-shot learning. We introduce a deterministic algorithm for computing the class centroids directly based on prior world-knowledge encoded in a hierarchy of classes such as WordNet. Experiments on CIFAR-100, NABirds, and ImageNet show that our learned semantic image embeddings improve the semantic consistency of image retrieval results by a large margin.Comment: Accepted at WACV 2019. Source code: https://github.com/cvjena/semantic-embedding

    Towards Automatic Identification of Elephants in the Wild

    Get PDF
    Identifying animals from a large group of possible individuals is very important for biodiversity monitoring and especially for collecting data on a small number of particularly interesting individuals, as these have to be identified first before this can be done. Identifying them can be a very time-consuming task. This is especially true, if the animals look very similar and have only a small number of distinctive features, like elephants do. In most cases the animals stay at one place only for a short period of time during which the animal needs to be identified for knowing whether it is important to collect new data on it. For this reason, a system supporting the researchers in identifying elephants to speed up this process would be of great benefit. In this paper, we present such a system for identifying elephants in the face of a large number of individuals with only few training images per individual. For that purpose, we combine object part localization, off-the-shelf CNN features, and support vector machine classification to provide field researches with proposals of possible individuals given new images of an elephant. The performance of our system is demonstrated on a dataset comprising a total of 2078 images of 276 individual elephants, where we achieve 56% top-1 test accuracy and 80% top-10 accuracy. To deal with occlusion, varying viewpoints, and different poses present in the dataset, we furthermore enable the analysts to provide the system with multiple images of the same elephant to be identified and aggregate confidence values generated by the classifier. With that, our system achieves a top-1 accuracy of 74% and a top-10 accuracy of 88% on the held-out test dataset.Comment: Presented at the AI for Wildlife Conservation (AIWC) 2018 workshop in Stockholm (https://sites.google.com/a/usc.edu/aiwc/home

    Maximally Divergent Intervals for Anomaly Detection

    Full text link
    We present new methods for batch anomaly detection in multivariate time series. Our methods are based on maximizing the Kullback-Leibler divergence between the data distribution within and outside an interval of the time series. An empirical analysis shows the benefits of our algorithms compared to methods that treat each time step independently from each other without optimizing with respect to all possible intervals.Comment: ICML Workshop on Anomaly Detectio

    Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection

    Full text link
    Automatic detection of anomalies in space- and time-varying measurements is an important tool in several fields, e.g., fraud detection, climate analysis, or healthcare monitoring. We present an algorithm for detecting anomalous regions in multivariate spatio-temporal time-series, which allows for spotting the interesting parts in large amounts of data, including video and text data. In opposition to existing techniques for detecting isolated anomalous data points, we propose the "Maximally Divergent Intervals" (MDI) framework for unsupervised detection of coherent spatial regions and time intervals characterized by a high Kullback-Leibler divergence compared with all other data given. In this regard, we define an unbiased Kullback-Leibler divergence that allows for ranking regions of different size and show how to enable the algorithm to run on large-scale data sets in reasonable time using an interval proposal technique. Experiments on both synthetic and real data from various domains, such as climate analysis, video surveillance, and text forensics, demonstrate that our method is widely applicable and a valuable tool for finding interesting events in different types of data.Comment: Accepted by TPAMI. Examples and code: https://cvjena.github.io/libmaxdiv

    Self-Supervised Learning from Semantically Imprecise Data

    Get PDF
    Learning from imprecise labels such as animal or bird, but making precise predictions like snow bunting at inference time is an important capability for any classifier when expertly labeled training data is scarce. Contributions by volunteers or results of web crawling lack precision in this manner, but are still valuable. And crucially, these weakly labeled examples are available in larger quantities for lower cost than high-quality bespoke training data. CHILLAX, a recently proposed method to tackle this task, leverages a hierarchical classifier to learn from imprecise labels. However, it has two major limitations. First, it does not learn from examples labeled as the root of the hierarchy, e.g., object. Second, an extrapolation of annotations to precise labels is only performed at test time, where confident extrapolations could be already used as training data. In this work, we extend CHILLAX with a self-supervised scheme using constrained semantic extrapolation to generate pseudo-labels. This addresses the second concern, which in turn solves the first problem, enabling an even weaker supervision requirement than CHILLAX. We evaluate our approach empirically, showing that our method allows for a consistent accuracy improvement of 0.84 to 1.19 percent points over CHILLAX and is suitable as a drop-in replacement without any negative consequences such as longer training times
    corecore